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Abstract. This study proposes a new technique, namely the Pattern Adaptive Neural Network
(PANN), for simplifying existing noise detection and removal methods. This technique is developed
based on a modified backpropagation algorithm using a fuzzy membership function on the error term.
It is able to make use of noisy data in a single step, with an automatic adjustment of data contribution
to network training. It is demonstrated via an application on an oil well data set. The results show that
the predictions from PANN matched well with the expert interpretations on the data set regarding the
data quality.
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1. Introduction

Neural networks are useful in solving complex, nonlinear classification and map-
ping problems. These networks, particular supervised networks, rely strongly on
the quality of the training data (which are input data paired with target data). In
practice, data corruption is unavoidable, and noisy data is usually present in the
sampled data set. Therefore, a large quantity of data for network training does not
necessary result in better generalisation. What is important is the quality of the
data. Hence, there is a need to filter out the noisy data and make neural networks a
more viable tool to solve practical problems.

The term ‘noisy data’ is commonly used to mean situations similar to taking
a clean input and output set and superimposing a Gaussian white noise which is
readily learnt by neural networks. In the context of this paper, the input and output
values all have the same degree of correctness prior to addition of noise. In the
petroleum engineering domain, there are inherent measurement errors which are
due to the limitations of the measurement tools and the discontinuous nature of the
real properties being measured. That is, the input and output properties can only
be measured at different scales, producing measurement discontinuities. Then, the
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usual sampling errors provide additional white noise. This low correlation between
input and output spaces is difficult for neural networks to learn.

Inclusion of noisy data for conventional neural network training has two effects
on prediction performance: (1) to slow down the learning of the clean or represent-
ative data; (2) to over-fit the noisy or unrepresentative data. Thus, selection of clean
data set for training is an important step in the use of neural networks. From our
experience, this step requires a significant amount of man-hours to examine each
and every single data point in order to construct such a clean data set. This is not
economically viable in most engineering applications.

In the past years, we developed various techniques to detect and remove noisy
data embedded in the data set using backpropagation neural networks [1, 2]. The
techniques were also successfully applied to a petroleum engineering problem [3].
The techniques developed were based on a two-step process: (1) to use a crisp
statistical property to define (or detect) noisy data; (2) to completely discard the
noisy data and use the remaining (clean) data for training.

The objective of this paper is to simplify the two-step process to a single, one-
step process. We will first briefly review the two previous techniques in noisy
data detection and removal, namely Bimodal Distribution Removal and Error Sign
Testing. In the later sections, we will introduce the concept of our technique in
pattern adaptive networks using a modified backpropagation algorithm, together
with the concept of fuzzy logic. Our technique does not require a crisp definition
of noisy data and no data is discarded during training. The proposed technique is
also demonstrated with an application to an oil well data set in the Asian region.

2. Assumptions

In this paper, we will assume a multi-layer feed-forward network trained using
backpropagation and will use the general expression ‘neural network’ to mean
such a network. All connections are from neurons in one level to neurons in the
next level, with no lateral, backward or multi-layer connections. Each neuron is
connected to each neuron in the preceding layer by a simple weighted link. The
network is trained using a training set of input patterns with desired outputs, us-
ing backpropagation of error measures. By backpropagation we mean the general
concept of developing the error gradient with respect to the weight, and not restric-
ted to the original gradient method. In the examples we used here, we have used
the basic sigmoid logistic function,y = 1/1 + e−x , though this is not essential to the
substance of our results.

3. Detection and Removal of Noisy Data Revisited

Slade and Gedeon [1] introduced the Bimodal Distribution Removal (BDR) method
to detect and remove noisy data. It is based on the frequency distribution of the
errors for all patterns in the training set at intervals of a certain number of epochs.
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An almost bimodal error distribution, with the low error peak containing patterns
the network has learnt well and the high error peak containing the noisy data, is
expected. The noisy data are defined according to the mean and standard deviation
of the error distribution. The detected noisy data are then discarded from the train-
ing set and the whole process repeats until the variance of the error distribution is
below a tolerance value.

Wong and Gedeon [2] subsequently introduced another noisy data detection and
removal technique. The method is known as Error Sign Testing (EST). It is based
on the change of error during training. In successful learning of a good pattern,
the error innth epoch, sayEn, should be smaller than the previous one,En−1.
Therefore, counting the number of negative signs of the expression(En − En−1)

can be used to define a noisy pattern. The noisy patterns are removed and further
training is performed using a reduced pattern set size.

In both the BDR and EST methods, a crisp definition of noisy data is used, and
further training is performed by discarding the identified noisy data.

4. Pattern Adaptive Neural Networks

In conventional neural networks, we generally assume that all the training data
contribute equally to the learning algorithm (backpropagation). In BDR and EST,
we assume that the detected noisy data should contribute nothing to the learning
algorithm and these data are discarded for further training. All these methods define
data using a crisp approach, that is, either ‘clean’ or ‘noisy’. In reality, however,
it is difficult to define the quality of data with certainty. Hence, fuzzy logic was
employed in our proposed method.

Using fuzzy logic, each data can be both ‘clean’ and ‘noisy’ with various de-
grees of membership. The new technique, Pattern Adaptive Neural Network
(PANN), is based on the use of a modified backpropagation (BP) algorithm with
a fuzzy membership function for the error term (i.e., target value minus calculated
output). Conventional BP makes use of the following expression to propagate the
error from the output layer to the hidden layer:

Wjk(t + 1) = Wjk(t)+ β

n∑
p

(Tkp − Ykp)Ykp(1− Ykp)Zjp,

whereWjk(t+1) andWjk(t) are the new and old weights connecting hidden neuron
j and output neuronk, respectively,β is the learning rate,Tkp and Ykp are the
target value and the calculated output at output neuronk for patternp (n of them),
respectively, andZjp is the output value at hidden neuronj for patternp.

In the proposed PANN method, the above equation is modified with the inclu-
sion of a fuzzy membership function for the (absolute) error:

Wjk(t + 1) = Wjk(t)+ β

n∑
p

(Tkp − Ykp)Ykp(1− Ykp)ZjpF (|Tkp − Ykp|)
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and,

F(X) = fx = exp

(
−X
C

)
,

whereF is a fuzzy membership function of Gaussian type (f ranges from 0 to 1)
for the absolute error valueX andC is a user-definable control constant for the
exponential function.

Note that other membership function can also be used. Thef value is basically
a scaled error value. It is important to note that whenC is large (say, greater than
10), thef value will be close to one. Hence, the inclusion of membership function
has no effect on the learning algorithm. This is equivalent to the conventional BP
algorithm.

The fuzzy membership functionF calculates the degree of quality for each
pattern. If the error of a pattern is large, its membership of the quality will be
low, and vice versa. The membership function value of each pattern varies during
training. In this way, there is no hard boundary to separate ‘clean’ and ‘noisy’ data,
except at the extreme cases.

From the definition of the membership function, a measure of average contri-
butionR of each pattern can also be defined:

R =
∑n

p exp
(
−Xp

C

)
n

.

We could compare two data sets with the same value ofC and useR as a measure
of cleanness: if all patterns are mostly clean (smallXp), theR value will be high,
and vice versa. Note that in the conventional BP algorithm (i.e., largeC), theR
value will be equal to one (see later sections).

5. Benchmarking Tests

In order to understand the proposed methodology, a benchmark test was carried out
using a cancer data set obtained from the Proben1 benchmark collection at CMU
[4]. The training data consisted of 525 data points with 9 inputs and two outputs
(two classes). There are another 174 test patterns. We first trained a neural net with
a largeC value (100) for 5,000 epochs, and the trained network was applied to
the test patterns. From this analysis, we obtained 99.2% and 98.9% classification
accuracy in the training and test set, respectively. When training with a smaller
C value (1), the corresponding results were 97.7% and 98.3%. Since we obtained
essentially identical results irrespectively of theC value used, we concluded that
the data set was quite clean, in the sense of not including discontinuities such as
encountered in geological data sets.

From the above analysis, we cannot demonstrate the usefulness of the proposed
method because it is not aimed to apply to clean data sets or data with simple
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Figure 1. The learning performance of the synthetic data set.

normally distributed noise. In a typical geological data set, it is highly corrupted
by complex discontinuities.

We now present a synthetic example to demonstrate the functionality of the
method. In the synthetic example, we used an exponential functiony = exp(−2x)
to generate 10 sample points starting fromx = 0.1 to 1.0 at a 0.1 interval. We also
created two additional points atx = 0.35 and 0.85, with a noise component of 0.3
added together with the correspondingy values. These were equivalent to 0.80 and
0.48, respectively. We used the proposed neural network to learn the 12 data points
(10 clean plus 2 noisy data). Two cases were run using two function constantC

values: 100 (similar to conventional BP algorithm) and 0.1.
In both cases, the same network configuration was used. The learning and mo-

mentum constants were both set to 0.1. One input, two hidden and one output
neurons were used. Both networks were trained for 50,000 epochs. Note that this
study was aimed to incorporate data with various quality, and hence no issues of
model validation and testing are discussed.

Figure 1 displays the learning profiles for the cases with the two different values
of the control constant for the fuzzy membership function. In Figure 1(a), the Y-
axis shows the root mean square error (RMSE) of the system which is defined
as

RMSE=
√∑n

p(Tp − Yp)2F(|Tp − Yp|)
n

,

where the functionF has the same definition as before.
Figure 1(a) shows that theC = 0.1 case gave smaller error compared to the

C = 100 case. The minimum error values for theC = 0.1 andC = 100 cases were
0.038 and 0.109, respectively. In the context of this paper, a smallerC value means
to put a smaller weight on a pattern compared to the case with a largerC value. This
means, a smallerC value will give rise to a smallerR value. Figure 1(b) displays
a plot of theR values versus the number of epochs. In theC = 100 case, it was a
flat line with aR value of almost one. This was because all the patterns contributed
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Figure 2. Approximated functions and thef values.

nearly the same amount (about 1.0) to the network. As discussed previously, this
is equivalent to the conventional BP algorithm. In theC = 0.1 case, however, the
average contribution of each pattern was increased from about 0.3 to 0.7, especially
from 10,000 to 13,000 epochs. This was because the neural network has learnt most
patterns and theirf values changed from low to high.

Figure 2 displays the resulting functions from the two networks. In Figure 2(a),
it shows that the approximated function from theC = 0.1 case fitted well with the
original function, even when the two noisy data were included in the training set.
TheC = 100 case, however, was affected by the noisy data and the approximated
function swayed towards the noise. Figure 2(b) displays the contribution of the
training data in a form of the fuzzy membership functionf values for theC = 0.1
case results. Note that thef values for theC = 100 case were not shown because
all thef values were close to one. In this figure, the high quality data are shown by
the highf values, and vice versa. This plot was, in fact, consistent with the quality
of the training data we knew beforehand. The two noisy data were shown with low
f values and our PANN model automatically filtered out their contributions to the
final approximated function.

6. An Oil Field Example

The proposed technique was applied to a data set from an oil well located in the
Asian region. The data set consisted of a number of data points at different well
depths. At each depth, seven different types of information or ‘well logs’ about
the electrical, acoustic, nuclear and other physical properties of the formation were
recorded. For simplicity purposes, we named the logs as ‘Log 1’, ‘Log 2’ to ‘Log
7’. Rock samples were retrieved at the corresponding depths and a petrophysical
property, namely permeability (or simply ‘Perm’) was measured for each rock
sample in the laboratory. Permeability is a crucial parameter in reservoir evaluation
as it measures the ability of fluid conductance in sedimentary rocks.
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Figure 3. Input and output data cross-plots. The size of the circles is directly proportional to
thef values.
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In petroleum reservoir engineering, rock extraction and laboratory measurement
are expensive, and hence permeability data is relatively few compared to well
logs. It is therefore important to develop functional relations to convert well logs
(independent variables) to permeability (dependent variable). In most cases, the
correlation between well logs and permeability (at the same depth) are complex
and highly corrupted by noise. Neural networks are popular in this problem domain
and some recent applications can be found in Wong et al. [3], Huang and others [5]
and Mohaghegh et al. [6].

In the example study, the seven logs were used as input data and the permeabil-
ity values were used as the target data. A total of 138 pairs of data was available as
the training data. TheC value was 0.1. The learning and momentum constants were
both set to 0.1. Seven input neurons, four hidden neurons and one output neuron
were used. The network was trained for 10,000 epochs. The finalR value was 0.6.

After training, an expert geologist closely examined the results and it was con-
firmed that the points with lowf values were relatively unreliable and should
not be considered equally in the network. Geologically speaking, data located in
homogeneous rocks are considered as high quality (highf ) and those located
in heterogeneous rocks are of low quality (lowf ). The f values obtained were
consistent with the geological interpretation of the reservoir.

Figure 3 displays the cross-plots of the seven input logs and permeability. For
visualisation purpose, the size of the circles is directly proportional to thef values,
that is, the larger the circle, the larger thef value and the better the quality. The
plots clearly show that low quality points tend to form a separate cluster away
from the main population. Hence, the PANN model successfully trained a network
to automatically discount the contribution of unreliable data in a single, one step
process.

7. Conclusions

A new technique, namely Pattern Adaptive Neural Network (PANN), can be used
to train noisy data in a fast and simple manner. The proposed method was applied
to both a synthetic data set and an oil well data set in the Asian region. Based on
the results obtained from this study, the following conclusions can be drawn:

(1) Sampled data in a noisy environment should not be treated equally.
(2) PANN gives a measure of average contribution of pattern during the train-

ing stage.
(3) PANN provides a single, one step method to train data with various quality.

Based on the results from the present study, we will examine the sensitivity to the
initial weights of our PANN technique and selection of the values of the control
constant for the fuzzy membership function. We also plan to apply similar meth-
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odology to estimate the quality (uncertainty) of predictions where actual data are
not known.
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